KF - API
The Kingfisher API allows access to all of the Kingfisher's Liq Maps and GEX+
Apply for API access
To access the Kingfisher's API, you need to fill an application form. Upon reception, we'll get in touch with you.
On http://alpha.thekingfisher.io, click "Subscription" --> API Access --> Apply for API Access


Upon reception of the form, the Kingfisher team will get in touch with you.
Once your access becomes active, refer to the following section to effectively make use of the KF API.
API Usage
See below a crude API connector.
Note: Make sure to create a .env with
HOST='https://thekingfisher.io'
LOGIN="your_kf_login"
KEY="your_kf_password"
import requests
import os
import json
from dotenv import load_dotenv, find_dotenv
load_dotenv(find_dotenv())
# in .env
# HOST='https://thekingfisher.io'
# LOGIN="your_kf_login"
# KEY="your_kf_password"
class KingfisherController(object):
def __init__(self):
self.users = []
self.token = ""
self.headers = {}
self.keys = []
self.login()
def login(self):
login_response = requests.post(HOST + "/api/auth/login", data={"login": LOGIN, "password": KEY})
if(login_response.status_code):
self.token = (login_response.json()['token'])
self.headers = {'Authorization': 'Bearer ' + self.token}
def get_last_map(self, exchange, pair, type):
data = {'exchange': exchange, 'pair': pair, 'type': type}
return requests.post(HOST + '/api/private/map/latest',json=data, headers=self.headers).json()
# Being reworked, coming back soon
def get_ts_map(self, exchange, pair, ts, type):
data = {'exchange': exchange, 'pair': pair, 'ts' : ts,'type': type}
return requests.post(HOST + '/api/private/map/timestamp',json=data, headers=self.headers).json()
def plot_data (data):
prices = []
rel_str = []
for cluster in data:
if cluster not in ['Cummulated short liqs','Cummulated long liqs']:
prices += data[cluster][0]
rel_str += data[cluster][1]
import plotly.express as px
plot = px.histogram(x=prices, labels={'x': 'Price'}, y=rel_str, nbins = len(prices))
plot.show()
if __name__ == '__main__':
kf_control = KingfisherController()
resp = kf_control.get_ts_map('binance', 'BTC/USDT', time.time(), 'all_leverage')
data = resp['result']['data']
plot_data(data)
# plot histogram with plotly of data
resp = kf_control.get_last_map('binance', 'BTC/USDT', 'high_leverage')
To improve data readability, we recommend flattening the liqmap. The response contains multiple clusters, including noise, which helps with color representation in UX design. However, for GMM, KDE, or statistical analysis, this can be inconvenient and make data manipulation more difficult.
import pandas as pd
def process_data(self, data):
flattened_data = []
for key in data:
prices, density = data[key]
flattened_data.extend([{'price': p, 'density': d} for p, d in zip(prices, density) if d != 0])
return pd.DataFrame(flattened_data)
Last updated
Was this helpful?