import requests
import os
import json
from dotenv import load_dotenv, find_dotenv
load_dotenv(find_dotenv())
# in .env
# HOST='https://thekingfisher.io'
# LOGIN="your_kf_login"
# KEY="your_kf_password"
class KingfisherController(object):
def __init__(self):
self.users = []
self.token = ""
self.headers = {}
self.keys = []
self.login()
def login(self):
login_response = requests.post(HOST + "/api/auth/login", data={"login": LOGIN, "password": KEY})
if(login_response.status_code):
self.token = (login_response.json()['token'])
self.headers = {'Authorization': 'Bearer ' + self.token}
def get_last_map(self, exchange, pair, type):
data = {'exchange': exchange, 'pair': pair, 'type': type}
return requests.post(HOST + '/api/private/map/latest',json=data, headers=self.headers).json()
# Being reworked, coming back soon
def get_ts_map(self, exchange, pair, ts, type):
data = {'exchange': exchange, 'pair': pair, 'ts' : ts,'type': type}
return requests.post(HOST + '/api/private/map/timestamp',json=data, headers=self.headers).json()
def plot_data (data):
prices = []
rel_str = []
for cluster in data:
if cluster not in ['Cummulated short liqs','Cummulated long liqs']:
prices += data[cluster][0]
rel_str += data[cluster][1]
import plotly.express as px
plot = px.histogram(x=prices, labels={'x': 'Price'}, y=rel_str, nbins = len(prices))
plot.show()
if __name__ == '__main__':
kf_control = KingfisherController()
resp = kf_control.get_ts_map('binance', 'BTC/USDT', time.time(), 'all_leverage')
data = resp['result']['data']
plot_data(data)
# plot histogram with plotly of data
resp = kf_control.get_last_map('binance', 'BTC/USDT', 'high_leverage')
To improve data readability, we recommend flattening the liqmap. The response contains multiple clusters, including noise, which helps with color representation in UX design. However, for GMM, KDE, or statistical analysis, this can be inconvenient and make data manipulation more difficult.
import pandas as pd
def process_data(self, data):
flattened_data = []
for key in data:
prices, density = data[key]
flattened_data.extend([{'price': p, 'density': d} for p, d in zip(prices, density) if d != 0])
return pd.DataFrame(flattened_data)